Sunday, 10 March 2013

24 Interview Questions & Answers for Hadoop


What is a JobTracker in Hadoop? How many instances of JobTracker run on a Hadoop Cluster?

JobTracker is the daemon service for submitting and tracking MapReduce jobs in Hadoop. There is only One Job Tracker process run on any hadoop cluster. Job Tracker runs on its own JVM process. In a typical production cluster its run on a separate machine. Each slave node is configured with job tracker node location. The JobTracker is single point of failure for the Hadoop MapReduce service. If it goes down, all running jobs are halted. JobTracker in Hadoop performs following actions(from Hadoop Wiki:)
  • Client applications submit jobs to the Job tracker.
  • The JobTracker talks to the NameNode to determine the location of the data
  • The JobTracker locates TaskTracker nodes with available slots at or near the data
  • The JobTracker submits the work to the chosen TaskTracker nodes.
  • The TaskTracker nodes are monitored. If they do not submit heartbeat signals often enough, they are deemed to have failed and the work is scheduled on a different TaskTracker.
  • A TaskTracker will notify the JobTracker when a task fails. The JobTracker decides what to do then: it may resubmit the job elsewhere, it may mark that specific record as something to avoid, and it may may even blacklist the TaskTracker as unreliable.
  • When the work is completed, the JobTracker updates its status.

  • Client applications can poll the JobTracker for information.

How JobTracker schedules a task?

The TaskTrackers send out heartbeat messages to the JobTracker, usually every few minutes, to reassure the JobTracker that it is still alive. These message also inform the JobTracker of the number of available slots, so the JobTracker can stay up to date with where in the cluster work can be delegated. When the JobTracker tries to find somewhere to schedule a task within the MapReduce operations, it first looks for an empty slot on the same server that hosts the DataNode containing the data, and if not, it looks for an empty slot on a machine in the same rack.

What is a Task Tracker in Hadoop? How many instances of TaskTracker run on a Hadoop Cluster

A TaskTracker is a slave node daemon in the cluster that accepts tasks (Map, Reduce and Shuffle operations) from a JobTracker. There is only One Task Tracker process run on any hadoop slave node. Task Tracker runs on its own JVM process. Every TaskTracker is configured with a set of slots, these indicate the number of tasks that it can accept. The TaskTracker starts a separate JVM processes to do the actual work (called as Task Instance) this is to ensure that process failure does not take down the task tracker. The TaskTracker monitors these task instances, capturing the output and exit codes. When the Task instances finish, successfully or not, the task tracker notifies the JobTracker. The TaskTrackers also send out heartbeat messages to the JobTracker, usually every few minutes, to reassure the JobTracker that it is still alive. These message also inform the JobTracker of the number of available slots, so the JobTracker can stay up to date with where in the cluster work can be delegated.

What is a Task instance in Hadoop? Where does it run?

Task instances are the actual MapReduce jobs which are run on each slave node. The TaskTracker starts a separate JVM processes to do the actual work (called as Task Instance) this is to ensure that process failure does not take down the task tracker. Each Task Instance runs on its own JVM process. There can be multiple processes of task instance running on a slave node. This is based on the number of slots configured on task tracker. By default a new task instance JVM process is spawned for a task.

How many Daemon processes run on a Hadoop system?

Hadoop is comprised of five separate daemons. Each of these daemon run in its own JVM. Following 3 Daemons run on Master nodes NameNode - This daemon stores and maintains the metadata for HDFS. Secondary NameNode - Performs housekeeping functions for the NameNode. JobTracker - Manages MapReduce jobs, distributes individual tasks to machines running the Task Tracker. Following 2 Daemons run on each Slave nodes DataNode – Stores actual HDFS data blocks. TaskTracker - Responsible for instantiating and monitoring individual Map and Reduce tasks.

What is configuration of a typical slave node on Hadoop cluster? How many JVMs run on a slave node?

  • Single instance of a Task Tracker is run on each Slave node. Task tracker is run as a separate JVM process.
  • Single instance of a DataNode daemon is run on each Slave node. DataNode daemon is run as a separate JVM process.
  • One or Multiple instances of Task Instance is run on each slave node. Each task instance is run as a separate JVM process. The number of Task instances can be controlled by configuration. Typically a high end machine is configured to run more task instances.

What is the difference between HDFS and NAS ?

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant. Following are differences between HDFS and NAS
  • In HDFS Data Blocks are distributed across local drives of all machines in a cluster. Whereas in NAS data is stored on dedicated hardware.
  • HDFS is designed to work with MapReduce System, since computation are moved to data. NAS is not suitable for MapReduce since data is stored seperately from the computations.
  • HDFS runs on a cluster of machines and provides redundancy usinga replication protocal. Whereas NAS is provided by a single machine therefore does not provide data redundancy.

How NameNode Handles data node failures?

NameNode periodically receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode is functioning properly. A Blockreport contains a list of all blocks on a DataNode. When NameNode notices that it has not recieved a hearbeat message from a data node after a certain amount of time, the data node is marked as dead. Since blocks will be under replicated the system begins replicating the blocks that were stored on the dead datanode. The NameNode Orchestrates the replication of data blocks from one datanode to another. The replication data transfer happens directly between datanodes and the data never passes through the namenode.

Does MapReduce programming model provide a way for reducers to communicate with each other? In a MapReduce job can a reducer communicate with another reducer?

Nope, MapReduce programming model does not allow reducers to communicate with each other. Reducers run in isolation.

Can I set the number of reducers to zero?

Yes, Setting the number of reducers to zero is a valid configuration in Hadoop. When you set the reducers to zero no reducers will be executed, and the output of each mapper will be stored to a separate file on HDFS. [This is different from the condition when reducers are set to a number greater than zero and the Mappers output (intermediate data) is written to the Local file system(NOT HDFS) of each mappter slave node.]

Where is the Mapper Output (intermediate kay-value data) stored ?

The mapper output (intermediate data) is stored on the Local file system (NOT HDFS) of each individual mapper nodes. This is typically a temporary directory location which can be setup in config by the hadoop administrator. The intermediate data is cleaned up after the Hadoop Job completes.

What are combiners? When should I use a combiner in my MapReduce Job?

Combiners are used to increase the efficiency of a MapReduce program. They are used to aggregate intermediate map output locally on individual mapper outputs. Combiners can help you reduce the amount of data that needs to be transferred across to the reducers. You can use your reducer code as a combiner if the operation performed is commutative and associative. The execution of combiner is not guaranteed, Hadoop may or may not execute a combiner. Also, if required it may execute it more then 1 times. Therefore your MapReduce jobs should not depend on the combiners execution.

What is Writable & WritableComparable interface?

  • org.apache.hadoop.io.Writable is a Java interface. Any key or value type in the Hadoop Map-Reduce framework implements this interface. Implementations typically implement a static read(DataInput) method which constructs a new instance, calls readFields(DataInput) and returns the instance.
  • org.apache.hadoop.io.WritableComparable is a Java interface. Any type which is to be used as a key in the Hadoop Map-Reduce framework should implement this interface. WritableComparable objects can be compared to each other using Comparators.

What is the Hadoop MapReduce API contract for a key and value Class?

  • The Key must implement the org.apache.hadoop.io.WritableComparable interface.
  • The value must implement the org.apache.hadoop.io.Writable interface.

What is a IdentityMapper and IdentityReducer in MapReduce ?

  • org.apache.hadoop.mapred.lib.IdentityMapper Implements the identity function, mapping inputs directly to outputs. If MapReduce programmer do not set the Mapper Class using JobConf.setMapperClass then IdentityMapper.class is used as a default value.
  • org.apache.hadoop.mapred.lib.IdentityReducer Performs no reduction, writing all input values directly to the output. If MapReduce programmer do not set the Reducer Class using JobConf.setReducerClass then IdentityReducer.class is used as a default value.

What is the meaning of speculative execution in Hadoop? Why is it important?

Speculative execution is a way of coping with individual Machine performance. In large clusters where hundreds or thousands of machines are involved there may be machines which are not performing as fast as others. This may result in delays in a full job due to only one machine not performaing well. To avoid this, speculative execution in hadoop can run multiple copies of same map or reduce task on different slave nodes. The results from first node to finish are used.

When is the reducers are started in a MapReduce job?

In a MapReduce job reducers do not start executing the reduce method until the all Map jobs have completed. Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The programmer defined reduce method is called only after all the mappers have finished.

If reducers do not start before all mappers finish then why does the progress on MapReduce job shows something like Map(50%) Reduce(10%)? Why reducers progress percentage is displayed when mapper is not finished yet?

Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The progress calculation also takes in account the processing of data transfer which is done by reduce process, therefore the reduce progress starts showing up as soon as any intermediate key-value pair for a mapper is available to be transferred to reducer. Though the reducer progress is updated still the programmer defined reduce method is called only after all the mappers have finished.

What is HDFS ? How it is different from traditional file systems?

HDFS, the Hadoop Distributed File System, is responsible for storing huge data on the cluster. This is a distributed file system designed to run on commodity hardware. It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant.
  • HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware.
  • HDFS provides high throughput access to application data and is suitable for applications that have large data sets.
  • HDFS is designed to support very large files. Applications that are compatible with HDFS are those that deal with large data sets. These applications write their data only once but they read it one or more times and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-many semantics on files.

What is HDFS Block size? How is it different from traditional file system block size?

In HDFS data is split into blocks and distributed across multiple nodes in the cluster. Each block is typically 64Mb or 128Mb in size. Each block is replicated multiple times. Default is to replicate each block three times. Replicas are stored on different nodes. HDFS utilizes the local file system to store each HDFS block as a separate file. HDFS Block size can not be compared with the traditional file system block size.

What is a NameNode? How many instances of NameNode run on a Hadoop Cluster?

The NameNode is the centerpiece of an HDFS file system. It keeps the directory tree of all files in the file system, and tracks where across the cluster the file data is kept. It does not store the data of these files itself. There is only One NameNode process run on any hadoop cluster. NameNode runs on its own JVM process. In a typical production cluster its run on a separate machine. The NameNode is a Single Point of Failure for the HDFS Cluster. When the NameNode goes down, the file system goes offline. Client applications talk to the NameNode whenever they wish to locate a file, or when they want to add/copy/move/delete a file. The NameNode responds the successful requests by returning a list of relevant DataNode servers where the data lives.

What is a DataNode? How many instances of DataNode run on a Hadoop Cluster?

A DataNode stores data in the Hadoop File System HDFS. There is only One DataNode process run on any hadoop slave node. DataNode runs on its own JVM process. On startup, a DataNode connects to the NameNode. DataNode instances can talk to each other, this is mostly during replicating data.

How the Client communicates with HDFS?

The Client communication to HDFS happens using Hadoop HDFS API. Client applications talk to the NameNode whenever they wish to locate a file, or when they want to add/copy/move/delete a file on HDFS. The NameNode responds the successful requests by returning a list of relevant DataNode servers where the data lives. Client applications can talk directly to a DataNode, once the NameNode has provided the location of the data.

How the HDFS Blocks are replicated?

HDFS is designed to reliably store very large files across machines in a large cluster. It stores each file as a sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file are replicated for fault tolerance. The block size and replication factor are configurable per file. An application can specify the number of replicas of a file. The replication factor can be specified at file creation time and can be changed later. Files in HDFS are write-once and have strictly one writer at any time. The NameNode makes all decisions regarding replication of blocks. HDFS uses rack-aware replica placement policy. In default configuration there are total 3 copies of a datablock on HDFS, 2 copies are stored on datanodes on same rack and 3rd copy on a different rack.

10 comments:

  1. I just stumbled upon your blog and wanted to say that I have really enjoyed reading your blog posts. Any way I’ll be subscribing to your feed and I hope you post again soon.

    Car Wash Services in Mumbai

    ReplyDelete
  2. Thank you for this great article which conveyed a good information.keep more updates.
    SEO Company in India
    SEO Services in India
    SEO Companies in India

    ReplyDelete
  3. I found your blog while searching for the updates, I am happy to be here. Very useful content and also easily understandable providing.. Believe me I did wrote an post about tutorials for beginners with reference of your blog. 
    microsoft azure training in bangalore
    rpa training in bangalore
    rpa training in pune
    best rpa training in bangalore

    ReplyDelete
  4. I Regreat For Sharing The information The InFormation shared Is Very Valuable Please Keep Updating Us Time Just Went On Reading The Article Python Online Training AWS Online Training Hadoop Online Training Data Science Online Training

    ReplyDelete
  5. Thanks for giving great kind of information. So useful and practical for me. Thanks for your excellent blog, nice work keep it up thanks for sharing the knowledge.
    AWS Training in Chennai | AWS Training Institute in Chennai

    ReplyDelete
  6. I believe that your blog will surely help the readers who are really in need of this vital piece of information. Waiting for your updates.
    aws training in chennai | aws training in annanagar | aws training in omr | aws training in porur | aws training in tambaram | aws training in velachery

    ReplyDelete
  7. I feel happy about the topic that you have shared with us. keep sharing your information regularly for my future reference. This content creates a new hope and inspiration with me. Thanks for sharing article. The way you have stated everything above is quite awesome. Thanks for posting the information.

    Aws Training in Chennai

    Aws Training in Velachery

    Aws Training in Tambaram

    Aws Training in Porur

    Aws Training in Omr

    Aws Training in Annanagar

    ReplyDelete
  8. It’s just incredible how much you can take away from something simply because of how visually beautiful it's!
    You've put with each other a great blog space --great graphics, videos, and layout.
    This is absolutely a must-see weblog!
    Underground lottery online

    ReplyDelete